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Paul Ehrlich; 1897
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“If it is possible
to protect small laboratory
animals in an easy
and safe way against infectious
and highly aggressive
neoplasms, then it will
be possible to do the same for
human patients”
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Leukemia Stem Cells and Microenvironment:
Biology and Therapeutic Targeting
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Tolerogenic DCs
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Dendritic cell immunotherapy: mapping the way
(Melief C. et al., Nat Med., 2004)

Early clinical trials clearly show the potency of DC therapy, but
there are still important questions to be solved before its intoduction
as a standard cancer treatment.



Beyond Self vs Non-Self: the Danger Model

Annu. Rev. Immunol. 1994. 12:991- 1045
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Abstract

For many years immunologists have been well served by the viewpoint
that the immune system’s primary goal is to discriminate between self and
non-self. I believe that it is time to change viewpoints and, in this essay, I
discuss the possibility that the immune system does not care about self
and non-self, that its primary driving force is the need to detect and protect
against danger, and that it does not do the job alone, but receives positive
and negative communications from an extended network of other bodily
tissues.

INTRODUCTION

Among the fundamental questions in immunology, there are three that lie
at the heart of the regulation of immunity. They are: 1) How is self-
tolerance induced and maintained? 2) How is memory induced and main-
tained? and 3) How is the class of response determined? This essay is about
the first one, tolerance (actually T cell tolerance), but it is also about
something deeper, something that affects the way we think about every
aspect of immunity. It is about the belief that the immune system’s primary
driving force is the need to discriminate between self and non-self. I have
abandoned this belief.

Over the years that I have been trying to understand immunological
tolerance, I have been intrigued, mystified, and dissatisfied by a range of

*The US government has the right to retain a nonexclusive, royalty-free licensein and to
any copyright covering this paper.
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Emerging Hallmarks of Cancer

Deregulating cellular Sustaining proliferative Avoiding immune
energetics Sl destruction

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Genome instability T — Tumor-promoting
and mutation immortality Inflammation

Cell 2011 144, 646-674



Cancer immunoediting
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Cancer immunoediting:
Equilibrium

Genetic and epigenetic changes

T Tumor cell variants
Resistance to immune detection

Detection of equilibrium phase
Drivers of equilibrium phase ')
Tumor antigens at the equilibrium phase .

Targeting tumors at the equilibrium phase

NK cells,
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IFN-0/B
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~ Effector cell anergy
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Genetic instability/immune selection

tumor dormancy
Current Opinion in Immunology

Deepak Mittal et al , Current Opinion in Immunology, Volume 27, 2014, 16 - 25



The adaptive immune system promotes an Antibody-induced equilibrium disruption
equilibrium state in primary MCA-induced does not occur as a result of prolonged
sarcomas. de novo transformation
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Demonstration of occult cancer in immunocompetent mice in the
equilibrium phase of cancer immunoediting
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Sarcoma cells in equilibrium show high immunogenicity, whereas those
spontaneously exiting equilibrium have attenuated immunogenicity
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DNMT3A mutation precedes NPM1 mutation in human AML
and is present in stem/progenitor cells at diagnosis and remission.
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How to harness the
Immune system against cancer

\ Proinflammatory cytokines
f , (IL-6 and TNF-0)

J. Clin. Invest. 117:1130-1136 (2007)



T cells versus NK cells :
differences and similarities

The T-Cell is like a contract killer The NK Cell is like a border patrol agent
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Unlike T cells that rearrange gene segments to
generate antigen-specific receptors, NK cells recognize

their target ligands using an array of germ-line encoded _
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ur antigens and T lymphocytes:
ce e delizia” for immunologists
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cells “naturally” kill cell targets
without prior sensitization
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Intratumor heterogeneity and clonal evolution:
the immunological pressure
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PD-L1 binds to PD-1 and inhibits
T cell killing of tumor cell

Tumor cell

Blocking PD-L1 or PD-1 allows
T cell killing of tumor cell

Tumor cell
death
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Response to novel immunotherapy approaches:
the role of tolerogenic pathways
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Breakthrough of the Year

Cancer
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T cells on the attack
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Science Breakthrough of
the year for 2013

“Science's editors have chosen cancer immunotherapy
as Breakthrough of the Year for 2013, a strategy that
harnesses the body's immune system to combat
tumors. It's an attractive idea, and researchers have
struggled for decades to make it work”.
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